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Summar2 

This paper presents a theoretical investigation of SANS 
from labeled chains in polymer networks which are cha- 
racterized by the topology of tube-like deformation de- 
pendent configurational constraints. The deformation 
dependence of the constraints is assumed to relax and 
to be determined by a microscopic deformation law. The 
results lead to the conclusion that the change of the 
radius of gyration of a network chain may be much less 
than the deformation of the macroscopic sample. It is 
pointed out that network defects favour the effect of 
constraint release. 

Introduction 

Small-angle neutron-scattering (SANS) on partially deu- 
terated networks allows a direct measurement of polymer 
chain deformation (stretching or swelling). This makes 
SANS a unique tool for assessing the validity of theo- 
retical models of polymer networks. 
~or uniaxially stretched networks (deformation ~x = ~v= 
~-I/2, ~z =~ ), the molecular deformations are charac~ 
terized by the radii of gyration Rgll and Rg& parallel 
and perpendicular to the stretchin~ direction, respec- 
tively. Within the framework of phantom network theory 
the molecular deformation of a stretched elastic phan- 
tom chain has been calculated for three cases: 
(a) Free-fluctuating phantom network (I): 

Rgll = ( f + 2 + ( f . 2 ) , ~ 2  ) 1 / 2  

R 2f  
g i  

(1)  

where R~i is the radius of gyration for unstretched iso- 
tropic ~etwork chains, and f the functionality. 
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(b) Affine junction displacement (2): 

Rgll = ( , ~ 2 + 1 ) 1 / 2  
Rg i 2 

(2) 

(c) Affine deformation: 

(3) 

This model assumes that the deformation of each con- 
figuration of the chains is affine in the macroscopic 
deformation. 
Most of the scattering experiments which were performed 
on uniaxially stretched end-linked siloxane networks 
showed much smaller molecular deformations than would 
be predicted even from Eq. (I) (3-5). Therefore, the 
following conclusions could be drawn (6,7): 
(a) The concept of network unfolding and junction re- 
arrangement (8) seems to provide a qualitative expla- 
nation for the small chain extension. Obviously, the 
degree of network unfolding depends on network prepa- 
ration, degree of sample deformation and quantity of 
solvent in the network. 
(b) The scattering on randomly crosslinked networks 
built up from long primary chains is different from 
that on end-linked networks. The former shows much 
greater sensivity to network deformation and much less 
sensivity to network functionality. The latter seem 
to be very sensitive to incomplete crosslinking which 
influences the elastic properties of a network sub- 
stantially. 
In the following section we present calculations of SANS 
from labeled chains in polymer networks which are cha- 
racterized by the topology of crosslinking (Tc) and of 
tube-like deformation dependent configurational con- 
straints (Tt). The deformation dependence of Tt will be 
described by a microscopic deformation law. 

The or.Y 

The network model is characterized by the following 
assumptions (9-11): 
(a) The configurations of the chains are described by 
space curves R(s), s being the arc length of the chain. 
(b) The mean ~onfiguration R_'(s) obeys the random walk 
behaviour : 

p(R'(s)) ~exp (-~-~ ~Cds (dR_'(s)/ds) 2) (4) 

0 
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Lc = Ncl is the contour length of a network chain. N c de- 
notes the number of statistical segments with length-1. 
The statistical weight for s configuration R(s) of a chain 
with a mean configuration (tube axis) R'(s)--is given by 

(I 4) Lc ~ 2 

P(R--(s)IR--'(s)) Nexp ( - I ( 2~ (d-R(s)/dS) + 

0 (5) 

+ J= dJ 41 (Rj(s) - Rj'(s)) ) ds ) 

x,y,z 

The strength of the constraints is determined in this 
model by the prefactors of (Rj(s) - R~(s)) 2. It is assumed 
that for the undeformed isotrapic system the constraining 
potential is independent of the direction of the con- 
strained chain and diagonal in the principal axis system 
of the deformation tensor of external deformation. The dj 
are the square roots of the mean square deviations of the 
chains from the tube axis, 

dj = (Rj(s) - R~(s)) (6) 

(c) The deformation dependence of dj follows the power 
law 

dj = d o ~jn (j = x,y,z) (7) 

with -I ~n--~+1. Eq. (7) was obtained by phenomenological 
considerations and could be derived in the frame of a 
mean field theory of topological constraints (10-13,18). 
The exponent n = a.b is the product of two contributions. 
a describes the constraining mechanism (-1~a ~+I) of 
network strands and b characterizes the effect of relaxed 
microscopic deformation, 

b 
odj -= /~j (O~b-L1) �9 

' 1  

b depends on the amount of solvent, sol fraction, network 
defects and on the crosslinking density (11). a contains 
contributions both due to packing effects and pure ent- 
anglement effects. In the case of moderately crosslinked 
networks made by randomly crosslinking of long primary 
chains the value a=+I/2 and 0~b~1 was derived (11-13). 
Highly crosslinked networks with small topological con- 
straining effects give a=-I/4 end b~1 (10-12). The pic- 
ture of trapped pure entanglements yields a=-1 and b~1 
(11), whereas a=+1 and b--1 leads to the non-constitutive 
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Mooney-Rivlin equation of stress-strain behaviour. 
It has to be noted that Ullman (19) introduced the concept 
of microscopic network chain deformation through a harmonic 
"memory" potential incorporated in the statistical weight 
of the configuration R(s). This potential tends to return 
the chsins to the configurations which they had before de- 
formation. 
The scattering function, 

(k - scattering vector), can be calculated following the 
replica method of Warner and Edwsrds (16), i.e. averaging 
the scattering law S T of a single network topology over the 
set of all possible topologies. S T is given in Eq. (8): 

m,m'U 

(e) 
�9 exp( i_k'(_R(s m) - R(Sm,)) ) 

N s denotes the total segment number. The double-sum runs 
over the segments of the whole network. We will consider 
that the mean tube axis configuration _R' (s) changes accor- 
ding to the microscopic deformation law R' (s) > c~ R' (s) 
(9-11). - = - 

Averaging of Eq. (8) leads to the expression 

f; S(k,~) = p(_R'(s)) ST(_k,=~) D(R'(s),(si,si'))~dsi ds i' 
i 

= I (9) 

The formal representation of S T as a free energy with the 
external generalized potential 

xQ(k) = XNs'2 ~ exp( i_k. (R_m - ~m,) ) 

is given by the following expressions (16): 

(11) 
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H corresponds to the Hamiltonian of Eq. (5). The expression 

D(_R(s),(si,si')) = D_R(s) _2(si)-_R(si')) 
i=1 

denotes the measure of functional integration including the 
configurational space constraints due to the crosslinks. 
The similar expression holds for the configuration R_' (s). 
M is the total number of chemical crosslinks. 
Simulating the action of chemical crosslinks by an additio- 
nal contribution to the harmonic constraining potential, 
using the replica trick (15) and transforming the n+1 replica 
-coordinates (15,16) leads for a=I/2 to the expression 

S(k,_=~) = Ns-2~Oexp( z ) (12) 

m , m '  j 

with kj 2 2 
o~j , , oLj2) 

z = , l "  I S m - S m , I  - kj2(1 - �9 

6 

. (wj , )  -2 �89 - e=, ( -  wj ' ,  Ism-Sm,I )) 

and 
wj '2 = wj 2 + 6 dj-4(~j) , 

V l V; 6M + wj = NT~ +(6 ~ )-2" 

(~4) 

(15) 

N is the total number of primary chains, their contour length 
is L. 
In the SANS-case (q =_ k212Nc/6 ~1), the limit do--~oo leads 
to the scattering law in stretching direction, 

which is equal to the scattering law of tetrafunctional 
phantom networks in the free-fluctuation limit. Equation 
(16) provides Eq. (I) for the case f=4. 
The more interesting case of topologically constrained 
moderately crosslinked networks (M/N~D~I) gives with 
1L/do2~M/N the expression 
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S(klj , ~)  ~ 1 - ~../~2 

with 
M du 2 d{ 2 -1  

. ~ =  2 3 ~"t,~ ~ (1 + 1 ,~ ,,i,L._) (4:~2 

(17) 

- 1 ) ( 1 8 )  

and 

dl I = do ~I12 3 b 

~ ~lliS the stretch ratio parallel to the principal strain 
a x e  s �9 

Discussion 

The result 

Rgfl /Rg i = /~ (19) 

leads to the conclusion that (in dependence of the value 
of b) the change of the radius os gyration of a network 
chain may be much less than the change of the macroscopic 
sample. 
It is to be noted that the network model of restricted 

i unction fluctuation (20,21) does not give such a result 
22). It interpolates between the two phantom models (e) 

and (b) mentioned in the Introduction. 
Following the interpretation proposed by Bastide et al. 
(8), the parameter b correlates for completely cross- 
linked networks with the ratio of the total number of 
crosslinks within a 21cry-coil (n) to the number of topo- 
logical neighbours (f). The larger this ratio, the more 
likely the deformation by knot-rearrangement and desinte~ 
penetration of network chains, l~rther, network defects 
favour the constraint release and reduce the amount of b. 
As no theory is available, we proposed the relations 
b ~(n/f)T~in the case of completely crosslinked networks 
and bNTo'/L in the case of networks with defects (11). 
T e is th~ trapping factor (17) with the limiting values 
zero at the gel point and unity for perfect networks with- 
out dangling ends. 
The comparison of Eq. (19) with experimental scattering 
data (3-5) obtained on end-linked PDMS networks yields 
values of b much smaller than one (11). The theory of Ref. 
11 predicts that for b ~I the topological constraints are 
nearly independent on defoz~nation as they have relaxed and 
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therefore, the elastic properties of the networks are nearly 
phantom-like. ~h~rther, it may be said that network defects 
favour constraint release, and the amount of defects depends 
on the completeness of crosslinking reaction (24). So, it 
can be concluded that the values of b close to zero obtained 
from the scattering experiments indicate that the PDMS net- 
works were not perfect networks. In this way, the small 
changes of the radius of gyration may be explained. 
Also some other explanations are possible, e.g. in Ref. 23 
the observed change of the scattering pattern has been dis- 
cussed in connection with the assumption of an imperfect mis- 
cibility of the hydrogenated and deuterated polymers. 
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